On counting point-hyperplane incidences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On counting point-hyperplane incidences

In this paper we discuss three closely related problems on the incidence structure between n points and m hyperplanes in d-dimensional space: the maximal number of incidences if there are no big bipartite subconfigurations, a compressed representation for the incidence structure, and a lower bound for any algorithm that determines the number of incidences (counting version of Hopcroft’s problem...

متن کامل

Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional n ×...

متن کامل

Counting Facets and Incidences

We show tha t m dist inct cells in an a r r angemen t of n planes in R a are bounded by O(m2/an + n 2) faces, which in turn yields a tight bound on the maximum number of facets bounding m cells in an arrangement of n hyperplanes in R a, for every d > 3. In addition, the method is extended to obtain tight bounds on the maximum number of faces on the boundary of all nonconvex cells in an arrangem...

متن کامل

Reference Point Hyperplane Trees

Our context of interest is tree-structured exact search in metric spaces. We make the simple observation that, the deeper a data item is within the tree, the higher the probability of that item being excluded from a search. Assuming a fixed and independent probability p of any subtree being excluded at query time, the probability of an individual data item being accessed is (1− p) for a node at...

متن کامل

Counting External Facets of Simple Hyperplane Arrangements

The number of external facets of a simple arrangement depends on its combinatorial type. A computation framework for counting the number of external facets is introduced and improved by exploiting the combinatorial structure of the set of sign vectors of the cells of the arrangement. 1 Background and introduction n hyperplanes in dimension d form a hyperplane arrangement. An hyperplane arrangem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2003

ISSN: 0925-7721

DOI: 10.1016/s0925-7721(02)00127-x